Publications
Zakharov D., Baumgartner L.P., Vennemann T., Bomou B., Di Rocco T., Pack A. Reaction-controlled triple O-isotope exchange trajectories during experimental alteration of olivine. Chemical Geology, 122504. Pre-proof available online Nov. 17 2024 https://doi.org/10.1016/j.chemgeo.2024.122504
Kitoga L.S., Zakharov D., Marin-Carbonne J., Boyet M., Moyen J.F., Di Rocco T., Pack A., Olivier N. and Stevens G., 2024. Oxygen and silicon isotopic compositions of Archean silicified lava and cherts of the Onverwacht Group: Implication for seafloor hydrothermalism and the nature of recycled components in the source of granitoids. Chemical Geology, 122407. https://doi.org/10.1016/j.chemgeo.2024.122407
Zhang L., Basak S., Zakharov D. and Szilas, K. (2024). Selective metasomatism of ultramafic cumulates within Archean supracrustal sequences. Geoscience Frontiers, 101851. https://doi.org/10.1016/j.gsf.2024.101851
Zakharov D.O., Marin-Carbonne J., Pack A., Di Rocco T., Robyr M. and Vennemann T. (2023) In-situ and Triple Oxygen Isotope Characterization of Seafloor Drilled Cherts: Marine Diagenesis and Its Bearing on Seawater Reconstructions. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2022GC010741
Zakharov D.O., Zozulya D.R. and Colòn D.P. (2023) Quantitative Record of the Neoarchean Water Cycle in a 2.67 Ga Magmatic-Hydrothermal System from the Fennoscandian Shield. Geology, https://doi.org/10.1130/G50702.1.
Zakharov D.O., Zozulya D.R. and Rubatto, D. (2022) Low δ18O Neoarchean precipitation recorded in a 2.67 Ga magmatic-hydrothermal system of the Keivy granitic complex, Russia. Earth and Planetary Science Letters 578, 117322, https://doi.org/10.1016/j.epsl.2021.117322
Zakharov DO, Tanaka R, Butterfield DA and Nakamura E (2021) A New Insight into Seawater-Basalt Exchange Reactions Based on Combined δ18O—Δ′17O—87Sr/86Sr Values of Hydrothermal Fluids From the Axial Seamount Volcano, Pacific Ocean. Frontiers in Earth Sciences 9, 691699, https://doi.org/10.3389/feart.2021.691699
Zakharov D.O., Lundstrom C.C., Laurent O., Reed M.H., and Bindeman I.N. (2021) Influence of high marine Ca/SO4 ratio on alteration of submarine basalts at 2.41 Ga documented by triple O and Sr isotopes of epidote. Precambrian Research, 358, 106164, https://doi.org/10.1016/j.precamres.2021.106164
Zakharov D.O., Marin-Carbonne J., Alleon J. and Bindeman I.N. (2021) Temporal triple oxygen isotope trend recorded by Precambrian certs: A perspective from combined bulk and in situ secondary ion probe measurements. Reviews in Mineralogy & Geochemistry, vol. 86, 323-365, http://dx.doi.org/10.2138/rmg.2021.86.10
Waterton P., Hyde W.R., Tusch J., Hollis J.A., Kirkland C.L., Kinney C., Yakymchuk C., Gardiner N.J., Zakharov D., Olierook H.K.H., Münker C., Lightfoot P.C. and Szilas K. Geodynamic implications of synchronous norite and TTG formation in the 3 Ga Maniitsoq Norite Belt, West Greenland. Frontiers in Earth Sciences 8, 562062, https://doi.org/10.3389/feart.2020.562062
Zakharov D.O., Bindeman I.N., Tanaka R., Fridleifsson G.O., Reed M.H. and Hampton R.L. (2019) Triple oxygen isotope systematics as a tracer of fluids in the crust: A study from modern geothermal systems of Iceland. Chemical Geology 530, 119312, https://doi.org/10.1016/j.chemgeo.2019.119312
Zakharov D.O., Bindeman I.N., Serebryakov N.S., Prave A.R., Azimov P.Ya. and Babarina I.I. (2019) Low δ18O rocks in the Belomorian belt, NW Russia and Scourie dikes, NW Scotland: A record of ancient meteoric water captured by the early Paleoproterozoic global magic magmatism. Precambrian Research 333, 105431, https://doi.org/10.1016/j.precamres.2019.105431
Zakharov D.O. and Bindeman I.N. (2019) Triple oxygen and hydrogen isotopic study of hydrothermally altered rocks from the 2.43-2.41 Ga Vetreny belt, Russia: An insight into the early Paleoproterozoic seawater. Geochimica Cosmochimica Acta 248, 185-209, https://doi.org/10.1016/j.gca.2019.01.014
Bindeman I.N., Zakharov D.O., Palandri J., Greber N.D., Retallack G.J., Hofmann A., Dauphas N., Lackey J.S. and Bekker, A. (2018) Rapid growth of subaerial crust and the onset of a modern hydrologic cycle at the Archean-Proterozoic transition. Nature 557, 545-548, https://doi.org/10.1038/s41586-018-0131-1
Avice, G., Marty, B., Burgess, R., Hofmann, A., Philippot, P., Zahnle, K., and Zakharov, D. (2018) Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochimica Cosmochimica Acta 232, 82-100, https://doi.org/10.1016/j.gca.2018.04.018
Zakharov D.O., Bindeman I.N., Slabunov A.I., Ovtcharova M., Coble M.A., Serebryakov N. S. and Schaltegger U. (2017) Dating the Paleoproterozoic snowball Earth glaciations using contemporaneous subglacial hydrothermal systems. Geology 45, 5–8, https://doi.org/10.1130/G38759.1
Bindeman I.N., Bekker, A. and Zakharov D.O. (2016) Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth Planet. Sci. Lett. 437, 101-113, https://doi.org/10.1016/j.epsl.2015.12.029
Khisamutdinova A.I., Zakharov D.O. and Soloviev A.V. (2015) The Western Kamchatka sedimentary basins: origin, age and composition of basal conglomerates. Russian Journal of Pacific Geology, 34, 78-92/Источники сноса для базальных конгломератов Западно-Камчатского осадочного бассейна: возраст и вещественный состав галек. Тихоокеанская Геология, т. 34 № 3, с. 78-92. http://itig.as.khb.ru/POG/2015/n_3/PDF_3_15/78-92.pdf
Onikienko L.D., Uganov, S.S., Zakharov D.O. and Ivanov, M.A. (2012) Geology, mineralogy and formation conditions “Oskolskiy” gold-bearing conglomerates from Kursk Magnetic Anomaly. Razvedka i Ohrana Nedr (Prospect and Protection of Mineral Resources; in Russian) /Геология, минералогия и условия образования «оскольских» золотоносных конгломератов КМА, Разведка и Охрана Недр 12, 3-7, http://rion-journal.com/2012/12/05/12-2012/
Lab members are underlined. Graduate student authors marked*. Undergraduate student authors marked†